space
About UNEP
space
space
United Nations Environment Programme
Division of Technology, Industry and Economics
top image
space
space space space
space
space

Newsletter and Technical Publications

<Sourcebook of Alternative Technologies for Freshwater Augumentation
in Latin America and The Caribbean>

PART B. TECHNOLOGY PROFILES

4. WATER CONSERVATION

4.1 Raised Beds and Waru Waru Cultivation

This technology is based on modification of the soil surface to facilitate water movement and storage, and to increase the organic content of the soil to increase its suitability for cultivation. This system of soil management for irrigation purposes was first developed in the year 300 B.C., before the rise of the Inca Empire. It was later abandoned as more technically advanced irrigation technologies were discovered. Nevertheless, in 1984, in Tiawanaco, Bolivia, and Puno, Peru, the system was re-established. It is known in the region as Waru Waru, which is the traditional Indian (Quechua) name for this technique.

Technical Description

The technology is a combination of rehabilitation of marginal soils, drainage improvement, water storage, optimal utilization of available radiant energy, and attenuation of the effects of frost. The main feature of this system is the construction of a network of embankments and canals, as shown in Figure 32. The embankments serve as raised beds for cultivation of crops, while the canals are used for water storage and to irrigate the plants. The soils used for the embankments are compacted to facilitate water retention by reducing porosity, permeability, and infiltration. Infiltration in the clay soils of the region varies from 20% to 30% of the precipitation volume. Thus, clay soils are preferred for this purpose. Sandy soils have too great a porosity to retain the water within the beds.

The cultivation takes place in the "new" soils within the raised bed created by the construction of the embankment. Within the bed, the increased porosity of the new soils results in enhanced infiltration, often increasing infiltration by 80% to 100% of the original soil. This system permits the recycling of nutrients and and all the other chemical and biological processes necessary for crop production. Water uptake by the raised beds is through diffusion and capillary movements using water contained within the beds or supplied from the surrounding canals. The soils are kept at an adequate moisture level to facilitate the cultivation of plants such as potatoes and quinoa (Chenopodium quinoa). Thermal energy is captured and retained in the soil as a result of the enhanced moisture levels, which protect the soils of the bed from the effects of frost. The system acts as a thermoregulator of the microclimate within the bed.

There are three types of raised bed systems, characterized by the source of water:

  • Rainwater systems, in which rainwater is the primary source of moisture. These systems require small lagoons for storage during dry periods and a system of canals to distribute the water to the beds. They are usually located at the base of a hill or a mountain, as shown in Figure 33.
  • Fluvial systems, in which moisture is supplied by water from nearby rivers. These systems require a hydraulic infrastructure, such as canals and dikes, to transport the water, as shown in Figure 34.
  • Phreatic systems, in which groundwater is the source of moisture in the beds. These systems are located in areas where the groundwater table is close to the surface of the soil and there is a mechanism for groundwater recharge, such as an infiltration lagoon, as shown in Figure 35.

The main design considerations for raised bed cultivation include the following:

  • Depth of the water table, since a high water table increases the height of the embankment required.
  • Soil characteristics, which affect both the dimensions of the embankment and the nature of the cultivation zone.

Figure 32

(larger image)

Figure 32: Raised Bed Irrigation System in Puno, Peru.
Source: Alipio C. Murilo and Ludgardo L. Mamani, Manual Técnico de Waru Waru, Para la Reconstrucción, Producción y Evaluación Económica, Puno, Peru, Programa Interinstitucional de Waru Waru, Convenio PELT/INADE-IC/COTESU, 1992.

Figure 33

(larger image)

Figure 33: Design of a Rainwater Waru Waru System.
Source: Alipio C. Murilo and Ludgardo L. Mamani, Manual Técnico de Waru Waru, Para la Reconstrucción, Producción y Evaluación Económica, Puno, Peru, Programa Interinstitucional de Waru Waru, Convenio PELT/INADE-IC/COTESU, 1992.

 

Figure 34
(larger image)

Figure 34: Design of a Fluvial Waru Waru System.
Source: Alipio C. Murilo and Ludgardo L. Mamani, Manual Técnico de Waru Waru, Para la Reconstrucción, Producción y Evaluación Económica, Puno, Peru, Programa Interinstitucional de Waru Waru, Convenio PELT/INADE-IC/COTESU, 1992.


Figure 35
(larger image)

Figure 35: Design of a Phreatic Waru Waru System.
Source: Alipio C. Murilo and Ludgardo L. Mamani, Manual Técnico de Waru Waru, Para la Reconstrucción, Producción y Evaluación Económica, Puno, Peru, Programa Interinstitucional de Waru Waru, Convenio PELT/INADE-IC/COTESU, 1992.

Figure 36
(larger image)

Figure 36: Cross-section of a Canal, Embankment and Raised Bed System.
Source: Alipio C. Murilo and Ludgardo L. Mamani, Manual Técnico de Waru Waru, Para la Reconstrucción, Producción y Evaluación Económica, Puno, Peru, Programa Interinstitucional de Waru Waru, Convenio PELT/INADE-IC/COTESU, 1992.

  • Climatic conditions, which include the volume and frequency of rainfall, temperature range, and frost frequency.

An example of a typical embankment and canal system is shown in Figure 36. Soft fill (e.g., compost or mulch) might be required within the embanked bed to maintain an adequate level of soil moisture.

Extent of Use

This technology has been used primarily in the Lake Titicaca region at Puno, Peru, and in the Illpa River basin of Bolivia.

Operation and Maintenance

Periodic reconstruction of the embankments or raised beds is necessary to repair damage caused by erosion and water piping. Reconstruction is usually done during the dry season (March to May, in Peru), although in some areas it is done immediately after harvesting because of a lack of available labor at other times of the year. Cultivation of pasture and other grasses of differing heights on the embankments will help to prevent or control erosion caused by torrential rains during the wet season. Cultivation practices can also damage the embankments. Raising animals such as hogs near the embankments should be avoided, since they can damage the cultivation areas in their search for food.

Periodic fertilization of the raised beds is recommended, and the use of insecticides and fungicides may be necessary to limit crop damage. Insecticides are particularly advisable in the cultivation of potatoes.

Level of Involvement

This technology has been promoted, and assistance to farmers provided, by several Peruvian governmental organizations, including the Instituto Nacional de Investigación Agro-pecuaria y Agroindustrial (INIAA), the Centro de Investigación Agropecuaria Salcedo (CIAS), the Centro de Proyectos Integrales Andinos (CEPIA), and by a number of NGOs. These organizations intend to reconstruct 500 ha of Waru Waru in 72 rural communities in the vicinity of Puno. Such an approach is considered to be representative of the involvement necessary to successfully implement a Waru Waru cultivation program in the region. Once established, the operation and maintenance of the systems, like the planting and harvesting of agricultural products, becomes the responsibility of the farmers who benefit from the use of this technology.

Costs

Very little information is available on the costs of these systems. The technology is at present largely experimental and limited to portions of the Andean Altiplano in Peru and Bolivia. Nevertheless, the cost per hectare of a phreatic raised-bed system for the cultivation of potatoes is estimated at $1 460 on the basis of the system created in Chatuma, Peru. Of this, 70% is direct cost and 30% is indirect cost. The production cost for 11.2 kg of potatoes using this technology in Chatuma was estimated at $480. The technology produces economic benefits during the first 3 years following construction, but, shortly thereafter reconstruction becomes necessary to maintain the productivity of the system.

Effectiveness of the Technology

In the communities around Puno, during the seven-year period between 1982 and 1989, 229 ha were converted to this technology, with mixed results. Some areas experienced large increases in productivity, particularly in the cultivation of potatoes, while other areas did not. Climatic conditions, such as drought and extremely cold weather, are likely to have contributed to the decrease in productivity in some areas, while poor design and construction of embankments may have led to the decline in productivity recorded in others.

Suitability

This technology is suitable in areas with extreme climatic conditions, such as mountainous areas that experience heavy rainfalls and periodic droughts, and where temperature fluctuations range from intense heat to frost. It should be very useful in arid and semi-arid areas.

Advantages

  • This technology can contribute to mitigating the effects of extreme climatic variations.
  • The construction cost is relatively low.
  • It can increase the production of certain agricultural crops.

Disadvantages

  • The life span of the technology is relatively short; the systems require reconstruction after about 3 years of operation.
  • Testing of soil texture and composition is necessary before implementation.
  • Waru Waru systems require annual maintenance and periodic repair.

Cultural Acceptability

This is an ancient technology, well accepted in the agricultural communities of Peru and Bolivia.

Further Development of the Technology

Application of this technology in other areas with different soil and climatic conditions will be a measure of its potential utility outside of the areas where it is traditionally used. Improvements in the design of the raised bed cultivation system are necessary in order to extend the economic life of the technology and to minimize the need for regular reconstruction of the beds to maintain their productivity.

Information Sources

Contacts

Hugo Rodríguez, Jefe del Sub-Programa PIWA, Instituto Nacional de Desarrollo (INADE), Proyecto Especial Binacional Lago Titicaca (PELT), Av. El Sol 839, Puno, Perú. Tel. (51-54)35-2305. Fax (51-54)35-2392.

Juan Ocola Salazar, Especialista, Instituto Nacional de Desarrollo (INADE), Proyecto Especial Binacional Lago Titicaca (PELT), Av. El Sol 839, Puno, Perú. Tel. (51-54)35-2305. Fax (51-54)35-2392.

Manuel Tapia Muñoz, Director General de Aguas y Suelos, Instituto Nacional de Recursos Naturales (INRENA), Calle 17 N, 355, Urb. El Palomar, San Isidro, Lima 27, Perú. Tel. (51-1)224-3298 / 224-2858. Fax (51-1)224-3218.

Bibliography

Aguilar, J. 1982. Las Chinampas, una Tecnología muy Productiva. México, D.F., Arbol.

Aguilar, P.C., and A. Callohuanca. 1990. Informe Final del Proyecto Waru Waru en la Producción Agropecuaria de las Comunidades Campesinas del Altiplano. Puno, Perú, Instituto de Investigaciones para el Desarrollo Social del Altiplano (IIDSA).

Apaza, V., and J. Coulombe. 1982. Tecnología del Cultivo de la Cebada en Puno. Lima, Edit. Convenio Perú, Canadá e INIPA (CORPUNO)

Banco Interamericano de Desarrollo. 1981. Proyectos de Desarrollo Agrícola. México, D.F., Limusa.

Bravo, R. 1991. "Prevención y Control de Plagas en Waru Waru." In Seminario Taller sobre Desarrollo Agrícola en Waru Waru. Puno, Perú, Proyecto PIWA, Convenio IC/COTESU- PELT/INADE.

Buckman, H., and N. Brady. 1966. Naturaleza y Propiedades de los Suelos. México, D.F., UTEHA.

Bueno, M., et al. 1990. Sistematización de Experiencias de la Rehabilitación de Waru Waru en Puno. Puno, Perú, Proyecto PIWA, COTESU/IC-PELT/INADE.

Canahua, A. 1991. "Comportamiento y Potencialidades de la Quinua (Chenopodium quinoa Wild) en las Zonas Agroecológicas de Puno." In Vll Congreso Internacional Sobre Cultivos Andinos (Resúmenes). La Paz, ORSTOM, CIID e IBTA.

-. "Respuesta de Cultivos Andinos a Perturbaciones Climáticas, Caso Altiplano de Puno." In Vll Congreso Internacional Sobre Cultivos Andinos (Resúmenes). La Paz, ORSTOM-CIID e IIBTA.

Cano, J. 1992. Influencia de la Preparación de la Superficie del Suelo Original del Waru Waru en Rendimiento de Papa Amarga. Puno, Perú, Proyecto PIWA, PELT-COTESUI/IC. (In press)

-, and A. Atencio. 1991. Efecto de las Epocas de Reconstrucción de Waru Waru en el Cultivo de Papa Amarga (Solanumm juzepczukii). Puno, Perú, Proyecto PIWA, PELT-COTESU/IC. (In press)

Carbajal D'Angelo, Fernando. 1980. Elementos de Proyectos de Inversión, vols. 1a 4. 1a. y 2a. ed. Lima, Hoslo.

Cari, A. 1991. "Principios Básicos para la Caracterización de Suelos en la Reconstrucción de Camellones (Waru Waru)." In Seminario Taller sobre Principios Técnicos de Manejo de Suelos Para la Reconstrucción de Camellones. Puno, Perú, Proyecto PIWA, Convenio IC/COTESU-PELT/ INADE.

Casseres, E. 1980. Producción de Hortalizas. San José, Costa Rica, IICA. (Serie Libros y Materiales Educativos No. 42)

Choque, J. 1981. "Pastos Andinos Anuales y Perennes." In Avances de Investigación, vol. 1. Puno, Perú, INIPA-CIPA XV.

Christiansen, J. 1967. El Cultivo de la Papa en el Perú. Lima, Jurídica. CIP. 1983. Principales Enfermedades, Nemátodos e Insectos de la Papa. Lima.

Díaz, C., and E. Velásquez. 1991. "Inventario de Infraestructuras Agrícolas Andinas en Puno, Perú." In Seminario Perú-Bolivia Sobre Investigaciones en Camellones. Puno, Perú, Proyecto PIWA, Convenio COTESU/ IC-INADE/PELT.

Erickson, C. 1985. "La Cronología de Camellones en la Cuenca del Lago Titicaca." In 45º Congreso Internacional de Americanistas, Bogotá, Colombia.

Fabricky, W.J., H.G. Thuesen, and G.J. Thuesen. 1976. Economía del Proyecto en Ingeniería. Englewood Cliffs, N.J., Prentice Hall Internacional.

Franco, J. , and H. Rincón. 1985. Investigaciones Nematológicas en Programas Latino-Americanos de Papa, vol II. Lima, CIP.

Frere, M., J.Q. Rijks, and J. Rea. 1975. Estudio Agroclimático de la Zona Andina. Ginebra, OMM; Roma, FAO; Paris, UNESCO. (Informe Técnico)

Garaycochea, I. 1986. Rehabilitación de Camellones en la Comunidad Campesina de Huatta-Puno. Puno, Perú, UNA. (Tesis, Ing. Agr.)

de Garmo, E. Paúl, and John R. Canada. 1978. Ingenieria Económica. México, D.F., Continental (CECSA).

Gonzales de Olarte, E., and B. Kervin. 1987. En la Lenta Modernización de la Economia Campesina: Cambio Técnico en Comunidades Campesinas. 1a. ed. Lima, IEP.

Grace, B. 1985. El Clima del Altiplano del Departamento de Puno. Puno, Perú. Agencia Canadiense para el Desarrollo Internacional, Convenio Perú-Canadá. INIPA/CIPA XXI.

Holdridge, L. 1987. Ecología Basada en Zonas de Vida. 2a. reimp. San José, Costa Rica, IICA.

Huacan, T. 1992. Producción de Pastos Cultivados en Terraplenes de Waru Waru. Puno, Perú, UNA, Facultad Ciencias Agrarias. (Tesis, Ing. Agr.)

Hull, W.X. 1985. Manual de Conservación de Suelos. 4a. reimp. México, D.F., Limusa.

Larico M., Ludgardo. 1986. La Promoción y Ejecución de Proyectos de Interés Comunal. Huancané, Puno, Perú, PDM.

Luque, J. 1983. Producción y Comercialización de la Cebada y Demás Cereales Menores en la Sierra del Perú. Lima, INIPA y Sociedad Alemana de Cooperación Técnica (GTZ).

Murillo, Alipio C., and Ludgardo L. Mamani. 1992. Manual Técnico de Waru Waru, Para la Reconstruccion, Produccion y Evaluación Económica. Puno, Perú, Programa Interinstitucional de Waru Waru, Convenio PELT/INADE-IC/COTESU.

ONERN-CORPUNO. 1984. Inventario de Evaluación e Integración de Recursos Naturales. Micro Región Puno. Suelos. Lima, Instituto Nacional de Planificación.

-. 1985. Programa de Inventario y Evaluación de los Recursos Naturales del Departamento de Puno. Sector de Prioridad I. Capítulo V, "Suelos." vol. 3. Lima, Instituto Nacional de Planificación.

Orsas, V. 1989. "Determinación de las Fluctuaciones de Almacenamiento de Agua en el Altiplano Central con Ayuda de Técnicas Nucleares." Ecología en Bolivia, 13, pp. 1-10.

-. 1989. "Efecto de un Manejo Agrícola Alternativo de un Aridisol del Altiplano Central de Bolivia sobre el Almacenamiento de Agua en el Suelo," Ecología en Bolivia, 13, pp. 23-32.

Ortega, P. 1991. "Las Papas Amargas en Cusco, Perú." In I Mesa Redonda Perú-Bolivia sobre Papa Amarga. La Paz, ORSTOM.

Paredes, G. 1987. Producción y Mejoramiento de los Pastos Andinos con la Incorporación de Leguminosas. Arequipa, Perú, Zenit.

Pastrana, F. 1992. Establecimiento y Producción de Alfalfa/Dactylls con Cebada en Terraplenes de Waru Waru. Puno, Perú. UNA. (Tesis Ing. Agr.)

Plaza, Orlando, and Marfil Francke. 1985. Formas de Dominio, Economía y Comunidades Campesinas. Lima, DESCO.

Pozas, R. 1964. El Desarrollo de la Comunidad. 2a. reimp. México, D.F., Universidad Nacional Autónoma de México. (Manual Universitario)

Raymond, D. 1984. Cultivo Práctico de Hortalizas. 2a. reimp. México, D.F., Continental.

Rea, J., and J. Vacher. (eds.). 1991. La Papa Amarga: Una Mesa Redonda Perú-Bolivia. La Paz. ORSTOM.

Risi, J. 1991. "La Investigación de la Quinua en Puno." In Perspectivas de la Investigación Agropecuaria Para el Altiplano, Lima, Proyecto de Investigación de Sistemas Agropecuarios Andinos (PISA), Convenio INIAA-CIID-ACDI. pp. 211- 257.

Rojas, T. 1983. La Agricultura Chinampera: Compilación Histórica. Chapingo, México, Universidad Autónoma Chapingo. (Serie No. 7)

Ruiz, C., and M. Tapia. 1987. Producción y Manejo de Forrajes en los Andes del Perú. Lima, Universidad Nacional San Cristóbal de Huamanga-PISA-INIPA-CIID-ACDI.

Samanez, R., and J. Choque. 1991. "Principios Básicos de Producción de Pastos y Forrajes en el Sistema de Waru Waru." In Seminario Taller Sobre Desarrollo Agrícola en Wanu Waru. Puno, Perú, Proyecto PIWA, Convenio COTESU/IC-INADE/PELT.

Sánchez, Rodrigo. 1987. Organización Andina, Drama y Posibilidad. Huancayo, Perú, Irinea.

Selke, W. 1968. Los Abonos. León, España, Academia.

Smith, C.T., W. Denevan, and P. Hamilton. 1981. "Antiguos Campos de Camellones en la Región del Lago Titicaca." In Heather Letchtman and Ana María Soldi (Comps.), Tecnología del Mundo Andino. Tomo I. México, D.F., Universidad Nacional Autónoma de México. pp. 25-50. (Serie Antropología No. 36)

Tapia, M. 1971. Pastos Naturales del Altiplano de Perú y Bolivia. San José, Costa Rica, IICA. (Publicaciones Misceláneas No. 85)

-. 1986. Guía Metodológica para la Caracterización de la Agricultura Andina. Lima, IICA-CIID.

- (comp.). 1977 . Quinua y Cañihua: Cultivos Andinos, San José, Costa Rica, IICA.

Turrent, A. 1985. El Agrosistema, un Concepto Util dentro de la Disciplina de Productividad. 2a. ed. Chapingo, México, Colegio de Postgraduados de Chapingo. pp. 291-319. (Escritos Sobre Metodología de la Investigación en Productividad de Agrosistemas)

-. 1985. El Método Gráfico Estadístico para la Interpretación Económica de Experimentos Conducidos con la Matríz Plan Puebla I. Chapingo, México, Colegio de Postgraduados de Chapingo. (Estudios Sobre Metodología de Investigación en Productividad de Agrosistemas No. 5)

Vacher, J., O. Atteia, and E. Imaña. 1988. "La Radiación Neta y la Evapotranspiración Potencial (ETP) en el Altiplano Boliviano." In Memorias del VII Congreso Internacional Sobre Cultivos Andinos. Quito, INIAP- CIID-LATINRECO. pp. 523-543.

Vallenas, M. 1983. "Situación Actual del Cultivo de Habas en Puno." In Curso Sobre Cultivo de Cebada y Habas. Puno, Perú, INIPA-CIPA XV. pp. 13-19.

Vilca, A. 1991. "Principios Básicos para Control y Prevención de Enfermedades del Cultivo de Papa en Waru Waru." In Seminario Taller Sobre Desarrollo Agrícola en Waru Waru, Puno, Perú, Proyecto PIWA. Convenio COTESU/IC-INADE/PELT.

Back

Table of ContentsTable of Contents Next

  • Brochure
  • IETC Brochure


  • International Year of Forests
  • International Year of Forests


  • World Environment Day
  • ??????


  • UNEP Campaign
  • UNite to Combat Climate Change