Integrated Solid Waste Management (ISWM)

Process to Develop

ISWM Plan
Need for ISWM

- Cities are facing an increasing growth in population, and shares in GDP growth, resulting in – among other things – increasing quantities of waste being generated.

- Due to changing lifestyles and consumption patterns, the quantity of waste generated has increased with quality and composition of waste becoming more varied and changing.

- Industrialization and economic growth has produced more amounts of waste, including hazardous and toxic wastes.

- There is a growing realization of the negative impacts that wastes have had on the local environment (air, water, land, human health etc.)

- Complexity, costs and coordination of waste management has necessitated multi-stakeholder involvement in every stage of the waste stream. This calls for an integrated approach to waste management.

- Local Governments are now looking at waste as a *business opportunity*, (a) to extract valuable resources contained within it that can still be used and (b) to safely process and dispose wastes with a minimum impact on the environment.
Defining ISWM

Integrated solid waste management refers to the strategic approach to sustainable management of solid wastes covering all sources and all aspects, covering generation, segregation, transfer, sorting, treatment, recovery and disposal in an integrated manner, with an emphasis on maximizing resource use efficiency.
Coverage of ISWM

An ISWM Plan per se is a package consisting of a Management System including:

Policies (regulatory, fiscal, etc.),

Technologies (basic equipment and operational aspects) &

Voluntary measures (awareness raising, self regulations)

A management System covers all aspects of waste management; from waste generation through collection, transfer, transportation, sorting, treatment and disposal.

Data and information on waste characterization and quantification (including future trends), and assessment of current solid waste management system for operational stages provide the basis for developing a concrete and locality-specific management system.
Required Information

1. Waste Characterization & Quantification Future Trends

2. Prevailing Solid Waste Management System & Gaps therein

3. Targets for ISWM

4. Constraints & Stakeholders’ Concerns

Integrated Solid Waste Management (ISWM) Plan
(Management System including Technical, Policy & Voluntary aspects)
Elements of ISWM Plan

I. Baseline data on waste characterization and quantification with future trends and baseline data on prevailing waste management systems and gaps there in

II. A list of targets to be achieved through the ISWM System

III. A Plan with details of the Management System covering policies, technologies (and voluntary measures)

IV. Implementation Aspects such as time schedules, costs, institutional requirements etc.

V. Monitoring and feedback mechanism
Development of Sub-management Systems

1. Generation Level
2. Collection & Transportation
3. Sorting, Treatment and Recovery
4. Final Disposal
Overall Management System

Management System

- Generation
 - Technological Policy (regulatory, fiscal)
 - Voluntary
 - Implementation Strategy

- Collection & Transportation
 - Technological Policy (regulatory, fiscal)
 - Voluntary
 - Implementation Strategy

- Sorting, Treatment & Recovery
 - Technological Policy (regulatory, fiscal)
 - Voluntary
 - Implementation Strategy

- Final Disposal
 - Technological Policy (regulatory, fiscal)
 - Voluntary
 - Implementation Strategy

Targets for
- Generation Level

Targets for
- Collection & Transportation

Targets for
- Sorting, Treatment & Recovery

Targets for
- Final Disposal

United Nations Environment Programme
Division of Technology, Industry and Economics
International Environmental Technology Centre
Document on ISWM Plan

Generation
Current Level To Future Projection

Targets & Issues of Concerns
- Pre-generation (SCP: CP, WM, DfE)
- Post-generation (Reuse/Recycle at Source)
- Segregation at Source for Primary Disposal

Constraints
- Technical, Economic, Social, Policy

Collection (Storage Transfer & Transportation)
Primary Collection – From Generation Source
Secondary Collection – From Transfer Station

Targets & Issues of Concerns
- Segregated or Mixed For Storage/Collection
- Level of Sorting at Transfer Stations

Constraints
- Technical, Economic, Social, Policy

Sorting, Treatment
Transfer Stations and Treatment Plants
(Biological, Thermal, Chemical)

Recovery (Materials & Energy)

Constraints
- Technical, Economic, Social, Policy

Final Disposal

Constraints
- Collection and treatment of leachate
- Reclamation of land

Implementation Strategy
Monitoring & Feedback

Management System
- Technological
- Policy (regulatory, fiscal)
- Voluntary

Current Systems and Gaps therein

Constraints
- Technical, Economic, Social, Policy
ISWM Plan

Technologies
1. Techno-Textility
2. Techno-Textility

Policies (Regulatory & Fiscal)
1. Technical Feasibility
2. Economic Viability
3. Implement-ability

Voluntary Measures
1. Technical Feasibility
2. Economic Viability
3. Implement-ability

Implementation Strategy
(Financing, Human Resources, Institutional Aspects, Timeline-Schedule, etc.)

Monitoring & Feedback Mechanism

Detailed Schemes based on Strategic Action Plan (Measures)
- Institutional, Policy and Regulatory
- Technological/Infrastructure (Projects)
- Voluntary

United Nations Environment Programme
Division of Technology, Industry and Economics
International Environmental Technology Centre
Steps for Developing ISWM Plan

<table>
<thead>
<tr>
<th>Steps</th>
<th>Status of Matale ISWM Plan</th>
<th>Identification of issues of concerns of the stakeholders – financial, social, technical and environmental – which they consider as very important to be addressed while designing the ISWM System;</th>
<th>Target:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collection of baseline data on waste characterization and quantification and to analyze future trends;</td>
<td>Target:</td>
<td>Designing the elements of the ISWM System - policies (regulatory, fiscal, etc.), technologies (basic equipment and operational strategies) and voluntary measures (awareness raising, self regulation, etc.) – and their technical feasibility, economic viability and implementability;</td>
<td>Target:</td>
</tr>
<tr>
<td>Collection of baseline data on prevailing management systems and to identify gaps there in;</td>
<td>Target:</td>
<td>Developing an implementation strategy including financing strategy, human resources, institutional aspects, and timeline (schedule of implementation);</td>
<td>Target:</td>
</tr>
<tr>
<td>Setting up the targets to be achieved through the ISWM System – targets are set for each operational level (generation, collection and transportation, sorting and material recovery, treatment and resource generation, and final disposal) and for coverage and efficiency of services, as well as for efficiency of efforts and management system;</td>
<td>Target:</td>
<td>Developing a monitoring and feedback system for periodic feedback to improve the ISWM system and its implementation or to modify the targets</td>
<td>Target:</td>
</tr>
<tr>
<td>Identification of the constraints – technical, socioeconomic and policy constraints – which should be kept in mind when designing the elements of an ISWM System;</td>
<td>Target:</td>
<td>Developing detailed schemes based on strategic action plan (measures)</td>
<td>Target:</td>
</tr>
</tbody>
</table>
Thank You…

Mushtaq Memon
Mushtaq.Memon@unep.or.jp

Surya Chandak
Surya.Chandak@unep.or.jp

United Nations Environment Programme
Division of Technology, Industry and Economics
International Environmental Technology Centre